2026/02/11 23:26 1/5 Aspecto de un programa en Ensamblador

Aspecto de un programa en Ensamblador

Veamos como es un programa completo en lenguaje ensamblador y que partes tiene. En el cédigo
hay una serie de elementos que apareceran en todos los programas y que veremos a continuacion
ejemplo00.s

.data

varl : .word 3

var2 : .word 4

var3 : .word 0x1234

.text

.global main

main : ldr rl, puntero varl /* rl <- & varl */
ldr r1, [rl1] /¥ rl <- *rl *x/
ldr r2, puntero var2 /* r2 <- & var2 */
ldr r2, [r2] /* r2 <- *r2 */
ldr r3, puntero var3 /* r3 <- & var3 */
add ro0, rl, r2 /* r0 <- rl + r2 */
str ro, [r3] /* *r3 <- ro@ */
mov r7, #1 /* si R7=1 swi sabe que deber salir a

sistema operativo */

swi O /* SWI, Software interrup */
/* _____________________ */
puntero varl : .word varl
puntero var2 : .word var2
puntero var3 : .word var3

La principal caracteristica de un médulo fuente en ensamblador es que existe una clara separacion
entre las instrucciones y los datos. La estructura mas general de un programa es:

» Seccion de datos. Viene identificada por la directiva .data. En esta zona se definen todas las
variables que utiliza el programa con el objeto de reservar memoria para contener los valores
asignados. Hay que tener especial cuidado para que los datos estén alineados en palabras de 4
bytes, sobre todo después de las cadenas. Alinear significa rellenar con ceros el final de un dato
para que el siguiente dato comience en una direccién multiplo de 4 (con los dos bits menos
significativos a cero). Los datos son modificables.

» Seccion de cddigo. Se indica con la directiva .text. En esta parte se escribe el programa y las
instrucciones en ensamblador que operan con los datos definidos en la seccién anterior.

De estas dos secciones la Unica que obligatoriamente debe existir es la seccidn .text (o seccion de
c06digo). En nuestro ejemplo comprobamos que estan las dos.

Un médulo fuente, como el del ejemplo, esta formado por instrucciones, datos, simbolos y directivas.
Estos elementos se describen a continuacion.

Datos

Wiki Sistemas - http://wiki.educabit.ar/



Last update: 2025/09/11 22:48 arm_aspectoprog http://wiki.educabit.ar/doku.php?id=arm_aspectoprog

Un dato es una entidad que aporta un valor numérico, que puede expresarse en distintas bases o
incluso a través de una cadena.

Para representar nUmeros tenemos 4 bases:
e La mas habitual es en su forma decimal, la cual no lleva ningln delimitador especial.
mov r0@, #90

* Luego tenemos otra muy Util que es la representacion hexadecimal, que indicaremos con el
prefijo Ox.

mov rl, #Oxff
 Otra interesante es la binaria, que emplea el prefijo Ob antes del nimero en binario.
mov r2, #0b11111111

e La cuarta y Ultima base es la octal, que usaremos en raras ocasiones y se especifica con el
prefijo 0. Si, un cero a la izquierda de cualquier valor convierte en octal dicho nimero. Por
ejemplo 015 equivale a 13 en decimal.

mov r3, #015

Todas estas bases pueden ir con un signo menos delante, codificando el valor negativo en
complemento a dos. Para representar caracteres y cadenas emplearemos las comillas simples y las
comillas dobles respectivamente.

Ver mas informacion sobre los tipos de datos que podemos encontrarnos en el lenguaje ensamblador
de ARM en la seccidn Tipos de Datos

Directivas

Las directivas son expresiones que aparecen en el médulo fuente e indican al compilador que realice
determinadas tareas en el proceso de compilacién, como delimitar secciones, insertar datos, crear
macros, constantes simbdlicas, etc... Las instrucciones se aplican en tiempo de ejecucién mientras
que las directivas se aplican en tiempo de ensamblado. Son facilmente distinguibles de las
instrucciones porque siempre comienzan con un punto.

El uso de directivas es aplicable sélo al entorno del compilador, por tanto varian de un compilador a
otro y para diferentes versiones de un mismo compilador. Las directivas mas frecuentes en el as son:

* Directivas de asignacion: Se utilizan para dar valores a las constantes o reservar posiciones de
memoria para las variables (con un posible valor inicial). .byte, .hword, .word, .ascii, .asciz,
.zero y .space son directivas que indican al compilador que reserve memoria para las
variables del tipo indicado. Por ejemplo:

al: .byte 1 /* tipo byte, inicializada a 1 */
var2 : .byte 'A’ /* tipo byte, al caracter 'A’ */
var3 : .hword 25000 /* tipo hword (16 bits ) a 25000 */
vard : .word 0x12345678 /* tipo word de 32 bits */

bl: .ascii " hola " /* define cadena normal */

http://wiki.educabit.ar/ Printed on 2026/02/11 23:26


http://wiki.educabit.ar/doku.php?id=arm_tipodatos

2026/02/11 23:26 3/5 Aspecto de un programa en Ensamblador

b2: .asciz " chau " /* define cadena acabada en NUL */
datl : .zero 300 /* 300 bytes de valor cero */
dat2 : .space 200, 4 /* 200 bytes de valor 4 */

La directiva .equ (6 .set) es utilizada para asignar un valor a una constante simbdlica:

.equ N, -3 /* en adelante N se sustituye por -3 */
e Directivas de control:
.text y .data sirven para delimitar las distintas secciones de nuestro mdédulo.

.align alineamiento es para alinear el siguiente dato, rellenando con ceros, de tal forma que
comience en una direccion multiplos del nimero que especifiquemos en alineamiento, normalmente
potencia de 2. Si no especificamos alineamiento por defecto toma el valor de 4 (alineamiento a
palabra):

al: .byte 25 /* definimos un byte con el valor 25 */
.align /* directiva que rellena con 3 bytes */
a2: .word 4 /* variable alineada a tama fno palabra */

.include para incluir un archivo fuente dentro del actual. .global hace visible al enlazador el simbolo
que hemos definido con la etiqueta del mismo nombre.

* Directivas de operando: Se aplican a los datos en tiempo de compilacion. En general, incluyen
las operaciones ldgicas &, |, [J, aritméticas +, -, *, /, % y de desplazamiento <, >, «, »:

.equ pies, 9 /* definimos a 9 la constante pies */
.equ yardas, pies /3 /* calculamos las yardas = 3 */
.equ pulgadas, pies *12 /* calculamos pulgadas = 108 */

e Directivas de Macros: Una .macro es un conjunto de sentencias en ensamblador (directivas e
instrucciones) que pueden aparecer varias veces repetidas en un programa con algunas
modificaciones (opcionales). Por ejemplo, supongamos que a lo largo de un programa
realizamos varias veces la operacién n’+1 donde n y el resultado son registros. Para acortar el
c6digo a escribir podriamos usar una macro como la siguiente:

.macro CuadMl input, aux, output
mul aux, input, input

add output, aux, #1
.endm

Esta macro se llama CuadM1 y tiene tres parametros (input, aux y output). Si posteriormente usamos
la macro de la siguiente forma:

CuadMl1 r1, r8, roO
el ensamblador se encargara de expandir la macro, es decir, en lugar de la macro coloca:

mul r8, rl, rl
add ro, r8, #1

Wiki Sistemas - http://wiki.educabit.ar/



Last update: 2025/09/11 22:48 arm_aspectoprog http://wiki.educabit.ar/doku.php?id=arm_aspectoprog

No hay que confundir las macros con los procedimientos. Por un lado, el cédigo de un procedimiento
es Unico, todas las llamadas usan el mismo, mientras que el de una macro aparece (se expande) cada
vez que se referencia, por lo gue ocuparan mas memoria. Las macros seran mas rapidas en su
ejecucion, pues es secuencial, frente a los procedimientos, ya que implican un salto cuando aparece
la llamada y un retorno cuando se termina. La decisidn de usar una macro o un procedimiento
dependera de cada situacion en concreto, aunque las macros son muy flexibles (ofrecen muchisimas
mas posibilidades de las comentadas aqui).

Simbolos

Los simbolos son representaciones abstractas que el ensamblador maneja en tiempo de ensamblado
pero que en el cédigo binario resultante tendra un valor numérico concreto. Hay tres tipos de
simbolos: las etiquetas, las macros y las constantes simbdlicas.

Como las etiquetas se pueden ubicar tanto en la seccién de datos como en la de cddigo, la
versatilidad que nos dan las mismas es enorme. En la zona de datos, las etiquetas pueden
representar variables, constantes y cadenas. En la zona de cddigo podemos usar etiquetas de salto,
funciones y punteros a zona de datos.

Las macros y las constantes simbdlicas son simbolos cuyo ambito pertenece al preprocesador, a
diferencia de las etiquetas que pertenecen al del ensamblador. Se especifican con las directivas
.macro y .equ respectivamente y permiten que el cddigo sea mas legible y menos repetitivo.

Instrucciones

Las instrucciones del as (a partir de ahora usamos as para referirnos al ensamblador) responden al
formato general:

Etiqueta : Nemonico Operando/s /* Comentario */

De estos campos, sélo el nemoénico (nombre de la instruccion) es obligatorio. En la sintaxis del as
cada instruccién ocupa una linea terminando preferiblemente con el ASCII 10 (LF), aunque son
aceptadas las 4 combinaciones: CR, LF, CR LF y LF CR. Los campos se separan entre si por al menos
un caracter espacio (ASCII 32) o un tabulador y no existe distincidn entre mayusculas y minusculas.

main : ldr rl, puntero varl /* rl <- & varl */

El Campo etiqueta, si aparece, debe estar formado por una cadena alfanumérica. La cadena no debe
comenzar con un digito y no se puede utilizar como cadena alguna palabra reservada del as ni
nombre de registro del microprocesador. En el ejemplo, la etiqueta es main:.

El campo Nemdnico (Idr en el ejemplo) es una forma abreviada de nombrar la instruccién del
procesador. Estd formado por caracteres alfabéticos (entre 1y 11 caracteres).

El campo Operando/s indica dénde se encuentran los datos. Puede haber 0, 1 6 mdas operandos en
una instruccién. Si hay mas de uno normalmente al primero se le denomina destino (salvo
excepciones como str) y a los demas fuentes, y deben ir separados por una coma. Los operandos
pueden ser registros, etiquetas, valores inmediatos o incluso elementos mas complejos como
desplazadores/rotadores o indicadores de pre/post-incrementos. En cualquiera de los casos el tamano

http://wiki.educabit.ar/ Printed on 2026/02/11 23:26



2026/02/11 23:26 5/5 Aspecto de un programa en Ensamblador

debe ser una palabra (32 bits), salvo contadas excepciones como Idr y str donde puede ser media
palabra (16 bits) o un byte (8 bits). En el ejemplo rl es el operando destino, de tipo registro, y
puntero_varl es el operando fuente, una etiqueta. Tanto r1 como puntero_varl hacen referencia a un
valor de tamafo palabra (32 bits).

Para mas detalles sobre el neménico y los operandos ver Formato de las instrucciones de
Ensamblador ARM)

El campo Comentario es opcional (rl « &varl, en el ejemplo) y debe comenzar con la secuencia /* y
acabar con */ al igual que los comentarios multilinea en C. No es obligatorio que estén a la derecha de
las instrucciones, aunque es lo habitual. También es comun verlos al comienzo de una funcién
(ocupando varias lineas) para explicar los parametros y funcionalidad de la misma.

Cada instruccion del as se refiere a una operacion que puede realizar el microprocesador. También
hay pseudoinstrucciones que son tratadas por el preprocesador como si fueran macros y codifican
otras instrucciones, como Isl rn, #x que codifica mov rn, rn, Isl #x, o bien push/pop que se traducen
instrucciones stm/ldm mas complejas y dificiles de recordar para el programador. Podemos agrupar el
conjunto de instrucciones del as, segun el tipo de funcién que realice el microprocesador, en las
siguientes categorias:

e Instrucciones de transferencia de datos Mueven informacién entre registros y posiciones de
memoria. En la arquitectura ARMv6 no existen puertos ya que la E/S estd mapeada en
memoria. Pertenecen a este grupo las siguientes instrucciones: mov, Idr, str, ldm, stm,

push, pop.

e Instrucciones aritméticas. Realizan operaciones aritméticas sobre nimeros binarios o BCD. Son
instrucciones de este grupo add, cmp, adc, shbc, mul.

* Instrucciones de manejo de bits. Realizan operaciones de desplazamiento, rotacién y logicas
sobre registros o posiciones de memoria. Estan en este grupo las instrucciones: and, tst, eor,
orr, LSL, LSR, ASR, ROR, RRX.

* Instrucciones de transferencia de control. Se utilizan para controlar el flujo de ejecucién de las
instrucciones del programa. Tales como b, bl, bx, blx y sus variantes condicionales.

(155)

From:
http://wiki.educabit.ar/ - Wiki Sistemas

Permanent link:
http://wiki.educabit.ar/doku.php?id=arm_aspectoprog

Last update: 2025/09/11 22:48

Wiki Sistemas - http://wiki.educabit.ar/


http://wiki.educabit.ar/doku.php?id=arm_intro_instrucc
http://wiki.educabit.ar/doku.php?id=arm_intro_instrucc
http://wiki.educabit.ar/
http://wiki.educabit.ar/doku.php?id=arm_aspectoprog

	Aspecto de un programa en Ensamblador
	Datos
	Directivas
	Símbolos
	Instrucciones


